Общая информация
АХОВ (расшифровка — аварийные химически опасные вещества) представляют собой такие соединения, которые способны испортить почву, воздух, воду, навредить здоровью людей или животных. С течением времени их становится больше (сегодня — 34). Основной перечень включает в себя:
- хлорпикрин;
- бромистый метил;
- галогеноводород;
- акрилонитрил;
- синильная кислота;
- фосген;
- хлорциан;
- аммиак;
- хлор;
- сероуглерод и др.
Все они могут использоваться как исходные или вспомогательные элементы в промышленности, образовываться в процессе производства. Предприятия, которые осуществляют свою деятельность при их непосредственном участии, называют ХОП или ХОО (расшифровка — химически опасное предприятие или объект). К ним относят переработку нефти, черную и цветную металлургию, производство минеральных удобрений и пр.
Характеристика АХОВ и их поражающих факторов устрашает. В организм человека или животного они проникают через дыхательные пути или кожу. Некоторые наносят вред, когда попадают в организм через рот (перорально). В любом случае конечный пункт вещества — кровь, через которую оно распространяется повсюду и влечет за собой преимущественно гибель.
Опасно и то, что АХОВ способны негативно воздействовать на организм, независимо от агрегатного состояния. Сначала поражается место прямого соприкосновения. Затем страдают слизистые, иногда воспаляется гортань, мешая нормальному дыханию.
Но так действуют не все вещества, последствия могут различаться.
Чрезвычайная ситуация
Химические аварии: реальность и тенденции
Возникновение чрезвычайных ситуаций (ЧС), обусловленных химическими авариями и катастрофами, в сегодняшних условиях вполне реально. Более того, в последние годы их вероятность постоянно растет.
Сегодня в мире происходят тысячи химических аварий при производстве, хранении, транспортировке аварийно химически опасных веществ (АХОВ). Наибольшее число аварий в мире и в России происходит на предприятиях, производящих или хранящих хлор, аммиак, минеральные удобрения, гербициды, продукты органического и нефтеорганического синтеза.
В России насчитывается более трех тысяч шестисот химически опасных объектов, а сто сорок шесть городов с населением более ста тысяч человек расположены в зонах повышенной химической опасности. За пять лет — с 1992-1996 г.г — произошло более 250 аварий с выбросом АХОВ, во время которых пострадали более 800 и погибли 69 человек. Причем 25% аварий произошло из-за эксплуатации оборудования свыше нормативного срока, коррозии оборудования и неработоспособности контрольно-измерительной аппаратуры.
Среди наиболее крупных химических аварий последних лет в мире можно отметить следующие.
В 1976 г. на химическом заводе итальянского города . Севезо произошла авария, в результате которой территория площадью более 18 км оказалась зараженной диоксином. Пострадали более 1000 человек, отмечалась массовая гибель животных. Ликвидация последствий аварии продолжалась более года.
Наверное, самой крупной аварией на химическом производстве за всю историю развития мировой промышленности оказалась катастрофа в г. Бхопале (Индия, 1984 г.), из-за которой погибло 3150 человек, а более 200 тысяч получили поражения различной степени тяжести.
В 1988 г. при железнодорожной катастрофе в г. Ярославле произошел разлив гептила, относящегося к АХОВ первого класса токсичности. В зоне возможного поражения оказались около 3 тысяч человек. В ликвидации последствий аварии участвовали около 2 тысяч человек и большое количество техники.
В 1989 г. произошла химическая авария в г. Ионаве (Литва). Около 7 тыс. т жидкого аммиака разлилось по территории завода, образовав озеро ядовитой жидкости с поверхностью около 10 тыс.кв. м. От возникшего пожара произошло возгорание склада с нитрофоской, ее термическое разложение с выделением ядовитых газов. Глубина распространения зараженного воздуха достигала 30 км и только благоприятные метеорологические условия не привели к поражению людей, т.к. облако зараженного воздуха прошло по незаселенным районам. В ликвидации последствий этой аварии участвовали 982 человека, привлекалась 241 единица техники.
В августе 1991 года в Мексике во время железнодорожной катастрофы с рельсов сошли 32 цистерны с жидким хлором. В атмосферу было выброшено около 300 тонн хлора. В зоне распространения зараженного воздуха получили поражения различной степени тяжести около 500 человек, из них 17 человек погибли на месте. Из ближайших населенных пунктов было эвакуировано свыше тысячи жителей.
Приведенные примеры дают представление о масштабности возможных последствий химических аварий, что дает основание говорить об актуальности проблем их предупреждения и ликвидации, защиты персонала и населения.
Прогностические оценки на ближайшую перспективу показывают, что тенденция повышение вероятности химических аварий в ближайшем будущем будет сохраняться. Для этого есть целый ряд предпосылок:
-рост сложных производств с применением новых технологий, которые требуют высокую концентрацию энергии и опасных веществ,
-крупные структурные изменения в экономике страны, приведшие к остановке ряда производств, нарушению хозяйственных связей и сбоям в технологических цепочках;
-высокий и все прогрессирующий износ основных производственных фондов, достигающих на ряде предприятий 80-100%;
-падение технологической и производственной дисциплины, уровня квалификации технического персонала;
-накопление отходов производства, опасных для окружающей среды; -снижение требовательности и эффективности работы надзорных органов;
-высокая концентрация населения, проживающего вблизи потенциально опасных промышленных объектов;
-отсутствие или недостаточный уровень предупреждающих мероприятий, способных уменьшить масштабы последствий химических аварий и снизить риск их возникновения;
— недостаточная законодательная и нормативная база;
— неизбежное увеличение объема химического производства, переход к работе с полной нагрузкой крупнейших химических комплексов страны, увеличение объема перевозок и хранения АХОВ;
-стремление иностранных государств и фирм к инвестированию вредных производств на территории России;
-возрастание вероятности терроризма на химически опасных производствах.
По расчетам экспертов затраты на предупреждение аварий во много раз меньше по сравнению с величиной ущерба, к которому они приводят в случае возникновения. Поэтому во всем мире вопросам безопасности химических производств придается очень большое значение.
Безопасность функционирования химически опасных предприятий зависит от многих факторов — это физико-химические свойства сырья, полуфабрикатов и продуктов, характер технологических процессов; конструкция и надежность оборудования; условия хранения и транспортировки АХОВ; состояние контрольно-измерительных приборов средств автоматизации; эффективность средств противоаварийной защиты; уровень органиации профилактической работы; наличие и совершенство диагностических комплексе своевременность и качество планово-предупредительных ремонтных работ; подготовленность и практические навыки персонала; система надзора за состоянием технических среде противоаварийной защиты.
Судя по имеющимся статистическим данным сегодня многие сложные технические комплексы обладают “внутренней присущей опасностью”, причем весьма значительной.
Сложные технические системы (СТС) в нашей стране и за рубежом в большинстве случаев создаются с использованием традиционных правил проектирования и простейших инженерных методов, расчетов и испытаний без обоснования их безопасности.
Понятно, что совершенно необходимо разработать и внедрить в практику новые подходы и принципы обеспечения безопасности химических производств. Главные требования – это исключение особо опасных аварий, способных привести к гибели, поражению людей, к значительному материальному ущербу, оказать существенное влияние на окружающую среду; обеспечение анализируемого, рассчитываемого и контролируемого уровня безопасности.
В случае возникновения химических аварий наиболее опасны АХОВ, которые при аварийных ситуациях сравнительно легко переходят из одного агрегатного состояния в другое, чаще всего из жидкого в газообразное (парообразное), из твердого в аэрозольное и наносят массовые поражения людям, животным и растениям.
Успех мероприятий по защите производственного персонала, населения и проведение аварийно- спасательных работ зависят от целого ряда факторов.
Один из них — обнаружение предпосылок (угроз) и самого факта возникновения аварий, оповещение работающего персонала, а также населения в зонах возможного заражения.
Система обнаружения угрозы и факта возникновения химических аварий должна предвидеть аварию еще на стадии ее «зарождения». Существующие системы обнаружения аварий не имеют средств контроля за выбросами ядовитых веществ с определением их концентраций и зон распространения, или эти средства несовершенны. По данным Госгортехнадзора России около 80% существующих технических средств имеют срок эксплуатации более 20 лет, морально и физически устарели.
Повысить эффективность обнаружения химических аварий возможно путем создания автоматизированной системы постоянного дистанционного обнаружения опасных веществ аварий (комплекс «АСД-Лидар») в дополнение к системам контроля на объекте, путем повышения уровня технической оснащенности, а также степени сопряженности имеющихся у дежурно-диспетчерской службы технических средств со средствами обнаружения аварий.
Одна из важнейших задач защиты населения — организация его оповещения и информирования при возникновении ЧС. Оперативность действия систем оповещения должна составлять считанные минуты. Реальное же время оповещения на большинстве потенциально опасных объектов составляет 25-30 минут и более, что нельзя признать удовлетворительным. Повышение оперативности оповещения может быть достигнуто применением автоматических систем обработки данных и оценки обстановки с использованием системы автоматических датчиков, способных немедленно фиксировать факт аварии и автоматически включать средства оповещения на угрожаемой территории. К сожалению, работа в этом направлении продвигается крайне медленно.
Успех ликвидации ЧС в большой степени зависит от быстрой и достоверной оценки сложившейся обстановки в зоне химической аварии. Для выявления химической обстановки применяются универсальные приборы газового контроля УПГК, газоопределители серии ГХ, и газосигнализаторы типа УГ- 2 комплектуемые набором индикаторных средств. Недостатками этих индикаторных средств является то, что они позволяют вести только периодический контроль зараженности окружающей среды и не обеспечивают быстрого получения данных обстановки при внезапно возникающих авариях.
Разработка современных приборов дистанционного контроля, пилотируемых и беспилотных разведывательных комплексов для проведения оперативной разведки зоны химической аварии рассматривается пока только как перспективная задача.
В случае аварий на химически опасных объектах задачей первоочередной важности является незамедлительное и эффективное проведение экстренных мер по защите рабочих и служащих предприятий и населения, проживающего в зоне возможного распространения зараженного воздуха.
Наиболее надежным средством защиты рабочих, служащих и населения от АХОВ являются убежища, отвечающие определенным требованиям. Однако использование убежищ для защиты от АХОВ затруднено по ряду причин. Действующие нормативные сроки приведения убежищ в готовность не обеспечивают немедленное укрытие людей при химических авариях; состояние оборудования для очистки и регенерации воздуха оставляют желать лучшего.
Производственный персонал химически опасных объектов для зашиты от АХОВ использует изолирующие дыхательные аппараты или противогазы промышленные фильтрующие, а также средства индивидуальной защиты кожи. Однако производство средств индивидуальной защиты для обеспечения технологической безопасности персонала химически опасных объектов в последние годы резко сократилось (до 3-5% от потребности), что ставит под угрозу своевременное освежение запасов средств индивидуальной защиты па предприятиях.
Основными средствами индивидуальной защиты населения от АХОВ ингаляционного действия являются гражданские противогазы (ГП-5, ГП-7, ГП-7В, ГП-7 ВМ, ГП-7 ВС) и детские (ДПФ, КЗД). Всем им присущ один недостаток — они не защищают от паров аммиака, оксидов азота, окиси этилена, метила хлористого и метила бромистого. Для защиты органов дыхания от вышеперечисленных СДЯВ приходится использовать дополнительные патроны ДПГ-1 и ДПГ-З, которые также защищают и от окиси углерода. Проблема состоит в своевременности обеспечения населения СИЗ и обеспечении защиты детей.
К настоящему времени завершена научно-исследовательская работа по обоснованию создания противогаза нового поколения, который должен обеспечить защиту от всех 34 АХОВ по номенклатуре. Кроме того, по конверсии с использованием лучших отечественных достижений в области противогазовой техники разработаны новые более совершенные промышленные противогазы. Задача состоит в создании их запасов.
Такой способ защиты как эвакуация может оказаться эффективным при длительных крупномасштабных авариях, когда возникает угроза распространения зоны химического заражения.
Решающим условием успешного осуществления вывода и эвакуации промышленного персонала и населения из зон химического заражения является проведение этого мероприятия в короткие сроки, что возможно лишь при заблаговременном планировании, четком осуществлении оповещения и сбора эвакуируемых, организации транспортного и медицинского обеспечения, службы охраны общественного порядка и управления выводом и эвакуацией.
Переход к новым формам хозяйствования усложнил организацию размещения эвакуированных и их всестороннее обеспечение.
Ликвидация последствий химической аварии включает длинный ряд операциий:
проведение химического контроля и разведки с целью определения площади заражения опасными концентрациями АХОВ, определения мест нахождения пострадавших, наличия и степени опасности вторичных источников и факторов поражения ( пожаров, аварий на коммунально-энергетических сетях и др.), контроль за распространением АХОВ;
локализацию и обеззараживание источника химического заражения; локализацию распространения первичного и вторичного облака АХОВ; поиск пострадавших, оказание им первой медицинской помощи и эвакуацию из зоны заражения;
ликвидацию вторичных факторов поражения, последствий аварий на коммунально-энергетических и технологических сетях;
специальную обработку техники, санитарную обработку людей, обеззараживание местности и водоемов; химический контроль полноты дегазации; сбор и утилизацию отходов.
При химических авариях население получает поражение в основном от первичного и вторичного облака зараженного воздуха, локализация и обеззараживание которых осложняется отсутствием возможности определить положение облака и апробированных высокоэффективных технологий нейтрализации АХОВ в парогазовой фазе.
Для выявления размеров и конфигурации облака зараженного воздуха и направления его распространения, на наш взгляд, наиболее перспективным средством может стать подвижный комплекс дистанционной химической разведки, использующий лазерную систему обнаружения химических агентов.
Существующие стационарные системы локализации химических аварий с применением дренажных систем водного орошения имеют нередко низкую эффективность и нуждаются в совершенствовании. Низкая эффективность этих систем обусловлена относительно слабой растворимостью большинства АХОВ в воде и вследствие этого необходимостью подачи при аварийной ситуации к месту аварии большого количества воды, а также проблематичностью обеспечения контакта воды с АХОВ в облаке, особенно в зимнее время.
Для определения параметров облака зараженного воздуха, направления его перемещения наиболее перспективной может стать разрабатываемая подвижная система оперативного контроля — «АСД — Лидар».
Не до конца решен вопрос, связанный с созданием, хранением и применением запасов дегазирующих веществ на объектах.
Большой практический интерес представляют высокоэффективные способы локализации источника заражения АХОВ путем экранирования зеркала испарения с использованием пенообразующих составов и применением в качестве экранов различных пленок и чешуйчатых материалов. Практика показывает, что применение экранов способно снизить скорость испарения АХОВ в несколько раз. Кроме того, для снижения скорости испарения АХОВ может применяться охлаждение зеркала пролива различными инертными охладителями.
Успешное решение задач ликвидации ЧС зависит от готовности сил , от их количественного и качественного состояния, уровня подготовленности к выполнению соответствующих работ. Сегодня в Российской Федерации уже заложена основа для функционирования уникальной, не имеющей аналогов в мировой практике Единой государственной системы по предупреждению и ликвидации чрезвычайных ситуаций (РСЧС). Ее уникальность состоит в том, что как на федеральном, региональном, так и на местном уровнях образованы системы органов управления и сил, разрабатываются схемы их взаимодействия в случае возникновения угрозы и самого факта чрезвычайной ситуации. Создана определенная нормативно-правовая база.
В настоящее время можно уверенно констатировать, что первый этап создания РСЧС в России завершен. На данном этапе в основном решались задачи по созданию Государственной системы спасения населения в ЧС. Цель первого этапа — создание государственной службы спасения— в основном выполнена.
Главная задача нынешнего этапа развития РСЧС — снижение рисков и смягчение последствий ЧС, т.е. осуществление комплекса мероприятий, проводимых заблаговременно и направленных на максимально возможное уменьшение риска возникновения ЧС, а также на сохранение здоровья людей, снижение размеров ущерба окружающей природной среде и материальных потерь в случае их возникновения.
Поскольку многие катастрофы и стихийные бедствия предотвратить нельзя, то борьба за уменьшение ущербов и потерь от них должна быть важным элементом государственной политики страны, в основу которой положены прогнозирование и своевременное предупреждение людей о грозящем бедствии.
Важным элементом устойчивого развития мировой цивилизации является разработка и осуществление превентивных мер, способных уменьшить и смягчить последствия природных и техногенных аварий и катастроф. Реализация мер, направленных на предупреждение ЧС, требует координации усилий различных министерств, ведомств, субъектов Российской Федерации и администраций потенциально опасных объектов, а также использование научно-технического потенциала страны.
В настоящее время функциональные подсистемы РСЧС имеют весьма незначительные специально уполномоченные органы управления и силы. Объектовые аварийно-восстановительные и аварийно-спасательные подразделения постоянной готовности малочисленны, созданы не на всех потенциально опасных производствах. На ряде предприятий возникают сложности, связанные с распадом формирований из-за значительных сокращений численности производственного персонала. Это положение существенно ограничивает их возможности в проведении спасательных и других неотложных работ, ликвидации последствий химических аварий. Поэтому в настоящее время все чаще основу территориальных сил во многих регионах составляют войска гражданской обороны (сводные мобильные отряды), а также отряды поисково-спасательной службы МЧС России.
Как правило, слабым звеном в планировании и практике применения различных формирований бывает взаимодействие, особенно на межведомственном уровне. Здесь должны сыграть свою основную роль комиссии по чрезвычайным ситуациям (КЧС) и органы управления, призванные обеспечить надлежащую эффективность системы РСЧС при ликвидации химических аварий. Взаимодействие между подразделениями и специализированными ведомственными формированиями должно быть спланировано на всех этапах работ.
Последствия химических аварий хотя и огромны, но не безграничны. При соответствующих мерах по прогнозированию, предупреждению чрезвычайных ситуаций, при своевременном принятии мер защиты, решительной борьбе с ними, последствия этих аварий могут быть локализованы, а в ряде случаев сведены к минимуму.
Эта задача будет выполнена лучше там, где будет налажено тесное сотрудничество органов власти, сил РСЧС, населения по обеспечению готовности к действиям в чрезвычайных ситуациях при химических авариях.
Начальник Центра стратегических исследований МЧС, к. х.н., Владимиров В.А.
Ведущий специалист Центра стратегических исследований МЧС, к. в. н. Лукьянченков А.Г.
Поражающие свойства
К поражающим свойствам химически опасных веществ относится токсичность. При определенной концентрации эти элементы способны заразить воздух, воду или почву так, что они станут непригодными для человека или животного. Помимо концентрации, рассматривают:
- плотность в зависимости от агрегатного состояния;
- стойкость. Учитывается время, в течение которого зараженная поверхность очищается самостоятельно или с помощью человека;
- токсичность. Ее оценивают дозировками: в каком количестве должно быть вещество, чтобы навредить живым организмам.
Токсичность разделяется на несколько групп в зависимости от того, как вещество действует на человека. Оно может оказывать нервно-паралитическое, удушающее, раздражающее действие. Некоторые нарушают психическое состояние, повышая уровень тревожности, паранойи и пр.
Классификация химических веществ
Химическое заражение может произойти различными веществами, все они обладают одним общим качеством – это токсичность для организма человека. Степень этого качества у разных веществ различна. В зависимости от этого выделяют 4 класса опасности химических веществ:
- Чрезвычайно опасные.
- Высокоопасные.
- Умеренно опасные.
- Малоопасные.
Любое поражающее вещество может оказывать на организм человека неоднородное действие. Но в качестве основного признака используют тот, что приводит к острому отравлению и поражению.
По характеру воздействия химически опасные вещества можно разделить на:
- Удушающие вещества. К ним относятся хлор, фосген.
- Общеядовитые. Вызывают общую интоксикацию организма. К ним можно отнести угарный газ.
- Одновременно удушающее и общеядовитое действие оказывают, например, оксиды азота, фтористый водород, сернистый ангидрид.
- Нейротропное и удушающее действие, такое как оказывает аммиак.
- Метаболические ядовитые вещества, например, окись этилена.
- Вещества, нарушающие обменные процессы в организме.
Такие вещества, как правило, всегда в избытке содержатся на химических предприятиях. Например, рабочие на заводе по производству азотной кислоты должны в обязательном порядке надевать защитный костюм Л-1. Средства индивидуальной защиты в виде перчаток, халатов, респираторов, а то и противогазов присутствуют на рабочих местах.
Отравления, симптомы, последствия
АХОВ условно можно разделить на сильнодействующие и некритичные. Чтобы удобнее было рассматривать категории, учитываются особенности отравления:
- угарный газ. При отравлении он поступает в кровь, взаимодействует с гемоглобином. Он вытесняет из него кислород, приводя к кислородному голоданию. Легкая и средняя степень отравления сопровождается рвотой, усталостью, головной болью. Тяжелая доводит до коматозного состояния;
- сероводород. В критичной концентрации вызывает мгновенную смерть, перекрывая дыхательную систему. Слабое заражение сопровождается отравлением, раздражением слизистых оболочек. Сероводород является сильным токсичным веществом. Если человек не погибает после его воздействия, страдает всю жизнь;
- синильная кислота. По определению считается одним из самых сильнодействующих ядов нейротоксичного воздействия. Используется на промышленных предприятиях, поэтому бытовые отравления — редкие.
В чрезвычайных ситуациях пострадавшим оказывается первая помощь. Организм нуждается в очистке, поэтому вводится глюкоза, раствор тиосульфата натрия. Нередко назначается промывание желудка. Если медицинские препараты отсутствуют, сохранить жизнь удается редко.
Самые опасные катастрофы
Сегодняшний выброс химических веществ в Москве и области нельзя назвать катастрофическим. Он находится в пределах нормы. Но за историю существования человечество пережило немало аварий на ХОО. Самыми опасными признано 6 техногенных ЧС:
- Италия, Севезо. В итальянском городке в 1976 году произошла крупная авария с выбросом аварийно химически опасных веществ. Около 18 кв. км оказалось заражено. Результатом стала и гибель животных. Пострадавшие люди исчислялись тысячами. Последствия удалось устранить только спустя год.
- Англия, Фликсборо. В 1974 город Фликсборо серьезно пострадал. Случилась авария на «НИПРО» — заводе, производившем аммоний. Благодаря быстрой реакции и соблюдению техники безопасности удалось обойтись гибелью всего лишь 55 человек, но еще 75 были ранены. Население ближайших городов не пострадало.
- Китай, Сучжоу. В 1978 году в китайском городе Сучжоу произошел один из самых ужасных видов аварий на химически опасных объектах. Цианистым натрием была заражена местная река, по подсчетам должно было погибнуть около 48 млн человек. Но благодаря оперативному вмешательству местной газеты число жертв сократилось до 3 тысяч.
- Индия, Бхопал. Завод Union Carbide в 1984 году пережил мощный взрыв. Это одна из наиболее серьезных химических аварий в мире. В результате погибли 4035 человек, а более 40 тыс. пострадали. После ЧС вокруг завода на большую территорию распространилось токсичное облако метилизиционата. Местная почва была заражена и долгое время была непригодна для использования.
- Швейцария, «САНДОЗ». В 1986 году на швейцарской химической фабрике произошла авария. Попытки потушить пожар привели к тому, что тонны ядовитых химикатов вылились в Рейн. Питьевая вода была отравлена, местные рыбы погибли. Благодаря оперативному вмешательству удалось снизить до минимума число пострадавших.
- Литва, Ионаве. ЧС в Литве в 1989 году привела к тому, что жидкий аммиак разлился по заводу. Ядовитое озеро распространилось на поверхности в 10 000 кв. м. Затем образовался пожар, загорелся склад с нитрофоской. В процессе разложения она выделяла токсичные газы. Удалось отделаться малыми последствиями, т. к. не было ветра, и зараженный воздух не распространился по округе.
Иногда примеры аварий на химически опасных объектах связаны не только с производственными предприятиями. В России, в Ярославле, в 1988 году случилась ж/д катастрофа. Состав перевозил гептил — вещество с первым уровнем токсичности.
Примерно 3 000 человек пострадали. Ликвидацией последствий занимались местные специалисты и волонтеры.
Причины и последствия аварий на химически опасных объектах
Главным образом, причиной возникновения чрезвычайных ситуаций является нарушение техники безопасности, неправильная эксплуатация или износ оборудования, а также недооценка систем предупреждения.
Аварии на химически опасных объектах не являются исключением. Здесь аварии тоже происходят из-за несоблюдения мер безопасности, износа оборудования или нарушения технологии производства.
Наибольшую опасность представляют собой аварии с неуправляемым выбросом АХОВ
, который происходит из-за взрыва, пожара или же поломки промышленного оборудования. Так, например, в 1984 году в городе Бхопал (Индия) произошла самая страшная техногенная катастрофа на химическом производстве. На заводе, где произошла катастрофа, производился севин – ядохимикат для борьбы с вредителями хлопка, а также овощных и цитрусовых культур. Для производства севина необходимо опасное вещество –
метилизоцианат
. Это вещество хранилось в огромном заводском резервуаре, откуда и произошел аварийный выброс паров метилизоцианата. Дело в том, что температура в резервуаре превысила температуру кипения – 39 градусов Цельсия. В результате в атмосферу было выброшено почти 42 тонны ядовитых паров. Это привело к гибели восемнадцати тысяч человек, а еще двести тысяч получили поражения различной степени тяжести. Официальной версии о том, что стало причиной аварии так и не прозвучало, но скорее всего это произошло из-за несоблюдения мер безопасности или из-за износа оборудования.
Надо сказать, что довольно большую опасность представляет транспортировка опасных химических веществ, которая осуществляется ежедневно. Как привило, такие вещества перевозят с помощью автомобильного или железнодорожного транспорта.
Помимо обычного номерного знака, автомобили, перевозящие АХОВ, маркируются и другим знаком с четырёхзначным числом внизу. Это число является международным кодом того или иного опасного вещества. Запомните наиболее распространённые из них: аммиак имеет номер 1005, анилин – 1547, бензин – 1203, серная кислота – 1830, соляная кислота – 1789, метан – 1971, хлор – 1017, этилен – 1038.
Если вы стали свидетелем аварии автомашин с этими (или подобными им) номерами, к ним нельзя приближаться – это крайне опасно. Для этого необходимы специальные средства индивидуальной защиты. Что касается цистерн, наполненных опасными веществами, то они обычно окрашиваются в яркие цвета или на них наносятся проблесковые маячки.
Примером аварии при транспортировке АХОВ может послужить авария, произошедшая в тысяча девятьсот девяносто девятом году в Санкт-Петербурге. В автоцистерне перевозилось четыре тонны бутадиена – это крайне ядовитое вещество, которое, к тому же, образует взрывоопасные газовоздушные смеси. Произошедшая утечка этого вещества сулила мощнейший взрыв при малейшей искре. Это грозило уничтожить не только саму автомашину, но и несколько прилегающих к дороге домов, а также привести к химическому загрязнению значительной части города. К счастью, цистерну удалось эвакуировать из города, и катастрофы не произошло.
Вы уже познакомились с различными характеристиками АХОВ. Сегодня, вы узнаете еще одну важную характеристику, которая называется токсодозой. Токсодоза
– это количественная характеристика токсичности аварийно-химически опасных веществ, соответствующая определённому уровню поражения при его воздействии на живой организм. В связи с этим, выделяется смертельная токсодоза, средняя токсодоза и средняя пороговая токсодоза.
Токсодоза называется смертельной
, если она вызывает смертельный исход у половины и более поражённых.
Токсодоза называется средней
, если она выводит из строя половину и более пораженных. Наконец,
токсодоза называется средней пороговой
, если у половины и более пораженных начинают проявляться начальные симптомы.
Как мы уже говорили, различные аварийно-химически опасные вещества имеют различный уровень токсичности
: о нём можно судить по таблице, которую вы видите на экране.
Основными параметрами зараженного воздуха является масса токсичного вещества, содержащегося в единице объёма воздуха. В таблице указаны значения в миллиграммах на литр, которых достаточно, чтобы получить ту или иную токсодозу за минуту. Например, смертельная концентрация аммиака составляет 100 миллиграммов на литр, а смертельная концентрация синильной кислоты – всего 1,5 миллиграмма на литр.
При аварии с выбросами АХОВ определяется зона химического заражения
, то есть, территория с опасными для людей концентрациями ядовитых веществ. Размеры очага химического заражения зависят от
трех основных факторов
: количество выброшенного опасного вещества его токсичность, а также погодные условия. О первых двух факторах мы уже говорили, поэтому сейчас уделим внимания тому, как на химическое заражение могут повлиять
погодные условия
.
Дело в том, что форма и размеры зоны заражения напрямую зависят от скорости ветра. При очень небольшой скорости ветра (до 0,5 метра в секунду), форму зоны заражения можно принять за круг.
Если же скорость ветра находится в пределах от половины до одного метра в секунду, то зона химического заражения будет представлять собой полукруг. При ветре от 1 до 2 метров в секунду – сектор с углом 90 градусов, а при ветре более 2 метров в секунду – сектор с углом 45 градусов. Кроме того, скорость ветра, естественно, влияет на скорость движения зараженного облака.
Даже при ветре всего в 1 метр в секунду, облако способно за час удалиться от аварии на 5-7 километров. При скорости 2 метра в секунду – на 10-14 километров, а при 3 метрах в секунду – на расстояние от 16 до 21 километра. При скорости ветра более 6 метров в секунду облако довольно быстро рассеивается.
Существует также такое понятие, как глубина зоны заражения
, то есть, распределение опасных веществ по высоте. Глубина зоны заражения также зависит от метеорологических условий.
Выделяют три степени, так называемой, вертикальной устойчивости атмосферы
. Это инверсия, изотермия и конвекция.
Инверсией
называется повышение температуры воздуха по мере увеличения высоты. Приземная инверсия может иметь толщину в десятки или даже сотни метров. Этот слой будет задерживать различные пары, что создаст наиболее благоприятную обстановку для распространения опасных концентраций АХОВ.
Изотермия
– это типичное состояние для пасмурной погоды. Слои воздуха пребывают в некотором равновесии, что тоже способствует застою АХОВ в приземном слое атмосферы. Наконец, при
конвекции
, слои воздуха перемещаются с одних высот на другие, способствуя рассеиванию облака и снижению концентрации АХОВ. Такое явление наиболее часто наблюдается в ясные летние дни.
В качестве примера, рассмотрим наиболее типичную химическую аварию с разрушением стотонной ёмкости с опасным веществом (в роли которого будет выступать хлор или аммиак). Скорость ветра возьмем за 2 метра в секунду. При таких условиях в случае инверсии, пагубное воздействие паров аммиака будет сказываться на расстоянии порядка 4 километров, а воздействие хлора – на расстоянии 20 километров.
В случае изотермии, воздействие аммиака будет распространяться уже не на 4, а лишь на одну 1,3 километра, а воздействие хлора – на 4 километра.
Ну а в случае конвекции, негативное влияние аммиака будет сказываться на расстоянии 500 метров, а негативное влияние хлора – на расстоянии, не превышающем 2 километра.
Надо сказать, что при высоких концентрациях аварийно-химически опасных веществ, выброшенных, в результате аварии на химически опасном объекте, поражение людей происходит очень быстро. Это может произойти буквально за несколько минут, в случае нахождения людей в непосредственной близости от аварии. Поэтому важна предварительная подготовка, а также, необходимо знать о правилах поведения и защитных мерах в подобных ситуациях. Этому будет посвящен следующий урок.
А сейчас давайте ознакомимся с классификацией аварий на химически опасных объектах по масштабам последствий. Итак, если речь идет о незначительной утечке АХОВ, то такая авария называется частной
. Устранить последствия этой аварии не так сложно. Значительно сложнее бороться с последствиями местной аварии.
Аварию называют местной
, если произошло разрушение довольно большой ёмкости или даже целого склада АХОВ. При этом зараженное облако достигает жилой застройки.
Если же облако проникает вглубь заселенных районов, то такая авария называется региональной
– здесь уже можно говорить о значительном выбросе АХОВ. Наконец, существуют
глобальные аварии
– это аварии, при которых происходит полное разрушение всех хранилищ АХОВ на крупном химически опасном объекте. Чаще всего это происходит в результате взрыва. В этом случае в зоне химического заражения могут оказаться несколько жилых районов.
Разделяют также четыре вида очагов поражения
(сокращенно ОП), в зависимости от длительности заражения местности, а также от сроков появления поражений человека. Первый вид очага поражения – это очаг поражения
нестойкими и быстродействующими АХОВ
– синильной кислотой, аммиаком, сероводородом и некоторыми другими веществами. Другой вид очага поражения – это
поражение нестойкими медленнодействующими АХОВ
. К таким веществам относятся хлорпикрин, фосген и азотная кислота. Далее следует поражение
стойкими быстродействующими АХОВ
, например, анилином или фурфуролом. И, наконец, поражение
стойкими медленнодействующими АХОВ
. Примером такого вещества может послужить тетраэтилсвинец.
Для того чтобы быстро среагировать при поражении быстродействующими АХОВ, необходимо знать, чем характеризуются такие очаги поражений. Во-первых, это одновременное поражение большого числа людей в течение нескольких минут (или нескольких десятков минут). Во-вторых – это быстрое развитие интоксикации. В-третьих, поражения быстродействующими ядовитыми веществами, как правило, наиболее тяжелые. И, конечно, при таких поражениях возникает острая необходимость скорейшего оказания первой помощи и эвакуации людей из пораженного района.
Итоги урока:
· Зона химического заражения
– это территория с опасными для людей концентрациями АХОВ.
· Зона, в которой произошли массовые поражения людей, называется очагом поражения
.
· Также мы познакомились с понятием глубины зоны заражения. Глубина зоны заражения
– это вертикальное распределение опасного вещества.
· Токсодоза
– это количественная характеристика токсичности АХОВ, соответствующая определенному уровню поражения при его воздействии на живой организм.
Почему происходят аварии
Причин аварий на заводах и предприятиях предостаточно. Чаще всего их связывают с несоблюдением техники безопасности. Нефтегазовые и радиационные объекты работают в соответствии с определенными правилами. Их нарушение и приводит к ЧС.
Другая частая причина аварий — человеческий фактор. При обеспечении предприятия всеми нормами безопасности его сотрудники могут допускать ошибки в работе. Поэтому в современности на таких объектах предпочитают устанавливать новое технологичное оборудование, автоматизируя процесс производства.
Нередко старая техника становится причиной взрывов. Оборудование на заводах нуждается в периодическом обновлении, равно как и в техническом обслуживании. Также существуют установленные правила эксплуатации, нарушения которых приводят к проблемам.
Виды чрезвычайных ситуаций
Все аварии можно охарактеризовать как настоящие катастрофы. Если не задействуются все средства защиты, устранить последствия сложно. Самыми опасными химикатами считаются те, после которых сохраняются косвенные признаки отравления. Например, воздействие синильной кислоты способствует образованию астмы, других сложных и неизлечимых заболеваний.
Классификация ЧС:
- выброс химикатов в процессе производства или хранения;
- катастрофы в процессе транспортировки;
- распространение химически опасных веществ после взрывов (например, по воздуху из-за ветра);
- ЧП с боеприпасами.
Несмотря на небольшой список, техногенные катастрофы случаются постоянно. Отказаться от производства АХОВ невозможно, т. к. они полезны для любого потребителя. Они являются неотъемлемой частью сельского хозяйства, металлургии, топливной промышленности, бытовой химии и многих других отраслей. Поэтому остается только придерживаться мер предосторожности и безопасности.
Действия при выбросе химикатов
Жители городов и населенных пунктов, расположенных в непосредственной близости от ХОО/ХОП, должны ознакомиться с правилами поведения в случае аварий. Они рекомендованы к исполнению даже по факту ликвидации последствий:
- отказаться от употребления овощей и фруктов, выращенных в своем огороде либо продающихся на открытом воздухе;
- не готовить мясо животных, забитых после объявления тревоги;
- не пить воду, т. к. ее источник мог попасть в очаг поражения.
Есть допускается консервированные продукты, приобретенные до ЧП. Если зона поражения не распространяется до населенного пункта, то употребляют в пищу и фрукты с овощами, которые лежали на домашних складах. Конечно же, приобретенные или собранные до начала тревоги.
Действия в случае химической аварии
Каждый человек должен понимать, что делать во время и после аварии на химическом объекте. Если он внутри помещения, порядок действий следующий:
- Закрыть окна, двери, вентиляционные или дымовые отверстия. Заделать щели в стыках рам лейкопластырем или другим материалом. Развесить на окна и двери одеяла, покрывала.
- Защитить дыхательные пути маской, респиратором или обычной марлевой (тканевой) повязкой, пропитанной водным раствором. При авариях с выбросом хлора повязку пропитывают 2-5% раствором пищевой соды, аммиака – 2% раствором лимонной или уксусной кислоты.
- Не включать электробытовые приборы, вырубить источники тепла, перекрыть газ.
При необходимости покинуть помещение, взять документы и минимум необходимых вещей, надеть одежду, прикрывающую тело (резиновые сапоги, плащ, шапку).
Порядок действий, если чрезвычайная ситуация произошла во время пребывания человека на открытом воздухе:
- закрыть тело любой одеждой, покрывалом, использовать средства защиты органов дыхания;
- найти убежище, но избегать подвальных помещений, низин, где могут скапливаться ядовитые вещества;
- покинуть заражённую местность (ветер должен дуть сбоку или в лицо), передвигаться, как можно быстрее, но не поднимать пыль.
Советуем почитать: Образец договора переработки давальческого сырья
Если средств индивидуальной защиты нет, надо задерживать дыхание, делать короткие, не глубокие вдохи. Покинув зону поражения, снять верхнюю одежду, умыться, высморкаться, прополоскать рот. В случае отравления обеспечить обильное питьё, вызвать врача.
Защита населения
На сооружения химическое оружие не способно оказать влияния. Однако вследствие вторичного заражения воздуха оно может навредить живым существам. Поэтому в первую очередь проводится дегазация жилых объектов, обработка сотрудников ХОО и людей, находящихся в зоне поражения. Важна скорость действий, поскольку предугадать аварии на предприятиях не представляется возможным.
Для быстрого устранения последствий населенные пункты заблаговременно готовятся к чрезвычайным ситуациям, проводятся учения. В каждой квартире должны быть средства личной защиты. Здания с большими скоплениями людей строятся особым образом, чтобы при аварии закрыть проникновение внутрь зараженного воздуха. Налаживается оперативная работа СМИ, других способов предупреждения граждан.
Население городов, расположенных в вероятных зонах поражения, должно быть всегда готово. На рабочих или учебных местах выполняются тренировки. Людей учат прятать воду от заражения, добывать чистую еду, укрываться в помещениях.
Также они изучают свойства АХОВ, что используются в производстве, ОБЖ, средства первой медицинской помощи. Каждому необходимо уметь защитить себя и своих близких в случае угрозы.
Опасные объекты
К такому роду предприятий относятся те, на которых происходит хранение, переработка и использование опасных веществ. Аварии на химически опасных объектах могут привести к заражению людей или их гибели от воздействия отравляющих веществ.
К таким предприятиям можно отнести следующие:
- Химические и нефтеперерабатывающие заводы.
- Предприятия нефтехимической промышленности.
- Очистные и водопроводные сооружения, где используется хлор.
- Холодильные установки, если в них используется аммиак.
- Склады, где хранятся ядохимикаты.
- Транспортные средства, перевозящие химически опасные грузы.
- Свалки отходов химической промышленности.
Все опасные предприятия можно разделить на несколько категорий по степени опасности:
- 1-я – в случае аварии в зону поражения попадает более 70 тысяч человек.
- 2-я – от 40 до 70 тысяч.
- 3-я – менее 40 тысяч.
- 4-я – при аварии опасность не выходит за границы предприятия.
У нас в стране таких опасных объектов расположено более 3 тысяч. При таком количестве знание свойств ХОВ, предварительная оценка возможных последствий, умение правильно и быстро принимать срочные меры по ликвидации аварии являются главным условием для того, чтобы обеспечение химической защиты населения было произведено на высшем уровне.